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COHERENT DETECTION OF RADAR TARGETS 
IN K-DISTRIBUTED, CORRELATED CLUTTER 

INTRODUCTION 

The coherent detection of radar targets in a background of correlated non-Gaussian clutter is a 
difficult problem that has recently begun to motivate active research. As a problem in detection 
theory, this problem is well understood. The optimum detection procedure is given by the Neyman- 
Pearson likelihood ratio. However, to formulate the likelihood ratio, a representation, such as a 
closed-form description, of the multivariate probability density function (pdf) is required. The model- 
ing of this multivariate pdf usually is accomplished by extending knowledge about the univariate pdf 
and the covariance matrix associated with the process. In the absence of knowledge of the complete 
structure of the multivariate pdf, this extension is necessarily arbitrary and is usually motivated by the 
researcher's desire for mathematical tractability. 

One such extension of the problem of detecting radar targets in non-Gaussian clutter has been 
described by Cantrell [1] and by Farina et al. [2]. The approach taken in these studies was based on 
the transformation noise model described by Martinez et al. [3]. This model maps a given multivari- 
ate pdf, usually Gaussian, into a non-Gaussian multivariate pdf in such a way that the resulting pdf 
has the required marginal pdf s and the required covariance matrix. Cantrell [4] also applied this 
same technique to the radar problem by starting with a bivariate complex Cauchy pdf instead of a 
Gaussian pdf In each of these cases, the result was the specification, based on the likelihood ratio, 
of a detection scheme that yields improved detection performance over the performance obtained by 
processing the same data with a detector designed for Gaussian noise. Although this type of com- 
parison is not a measure of the optimality of the non-Gaussian detector, it does reveal the benefit to 
be gained by correctly identifying the clutter process as non-Gaussian rather than assuming that it is 
Gaussian. 

Other methods for constructing a muhivariate pdf with specified marginals and a specified 
covariance matrix are available, and one of these alternate methods is used in this report. The 
approach followed here is motivated by physical arguments about the namre of electromagentic 
scattering from the surface of the sea [5] and is applicable to the problem of detecting radar targets in 
sea clutter. The clutter process is modeled as a nonhomogeneous Gaussian process where the clutter 
power level is a random variable. This model results in the so-called spherically invariant random 
process (SIRP), which has been described in the literature [6-11]. The problem of target detection in 
a SIRP has been the subject of little investigation. Yao [8] examined the case in which the detection 
threshold is set equal to 1. Goldman [12] examined the conditions under which correlation receivers 
are optunal. Picinbono and Vezzosi [13,14] examined the asymptotic detection of a weak signal in 
the presence of a real SIRP and found that the asymptotic detector is independent of the pdf of the 
unknown power level. Spooner [15] examined the performance of the optimum detector for the prob- 
lem in which the form of the pdf of the power level is known and the data are comprised of indepen- 
dent samples. None of these results is directly applicable to this study, although Picinbono and Vez- 
zosi did derive the form of the likelihood ratio for the problem considered here. This report exam- 
ines the problem of radar target detection with a small number of samples. 

Manuscript approved March 4, 1988. 
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In this report, the muhivariate pdf that describes the non-Gaussian clutter process is obtained by 
averaging a muhivariate complex Gaussian pdf with respect to a random variable that multiplies the 
normalized correlation matrix, i.e., the variance or (in the vocabulary of sea clutter researchers) the 
power level. The likelihood ratio is then obtained in closed form. The resulting test depends on the 
unknown signal amplitude and unknown initial phase. An approximation to this test that is indepen- 
dent of the signal amplitude and initial phase is then formulated, and the detection performace of this 
approximate test is evaluated for some specific examples. This detection performance is compared to 
the performance of the optimum test in which the signal amplitude and phase are known and to the 
performance of the Gaussian matched-filter detector against the same clutter data. 

MULTIVARIATE PROBABILITY DENSITY FUNCTION j 

A univariate pdf is assumed that describes the amplitude behavior of the complex clutter process 
as well as the normalized correlation matrix of the clutter process. The extension of this information 
to the muhivariate pdf proceeds in two steps. First, since the clutter process is modeled as a complex 
process, some assumption about the statistics of the phase of the process must be made. For radar 
clutter modeling, the phase of the clutter is generally assumed to be uniformly distributed. With this 
assumption and the assumption that the amplitude and phase of a given sample are independent, the 
univariate complex pdf can be immediately obtained. This pdf must then be extended to the mul- 
tivariate domain. 

I 
The assumption of nonhomogeneous Gaussian clutter automatically satisfies the above-stated 

assumptions. By nonhomogeneous Gaussian clutter, we mean that on any given detection decision, 
the observation samples are drawn from a population whose statistics are described by the following 
Gaussian pdf: 

where 

f(x   T) =   exp -— i  
' (2Trr|AK 2    [_     T 

(1) 

A       is a positive definite normalized correlation matrix, 

t        indicates transpose, 

the bar indicates conjugate, 

m       is the dimension of the problem (i.e., number of pulses), 

X       is the received signal vector of length m, and 

T       is the unknown power level that varies from one oservation to the next according to a pdf 
fir). 

1 

The resulting muhivariate pdf that describes the non-Gaussian clutter process is obtained as 

fi^) = \l fi^\T-)nr)dT 

(27r)" 

exp 
1 x'h-h 

r f(r)dr (2) 
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The choice of/(T) influences the statistical behavior of this process. To ensure that this statisti- 
cal behavior matches the desired univariate amplitude pdf g{\x |), /(T) is chosen as the solution to 
the integral equation 

00 j£. exp 
2T 

f{r)dT, (3) 

where g (| JC | | T) is a Rayleigh pdf conditioned on the parameter r. This integral equation is in gen- 
eral very difficult to solve. However, if g(|x |) is chosen to be the so-called K distribution [16], 
which has been shown to provide a good fit to sea clutter amplitude statistics [17, 18], the solution to 
this equation can be found.  It is given by the well-known gamma pdf, 

V 

fir) = 
V{v) 

T"  ' exp- (4) 

where r() is a gamma function, rj fixes the mean of the distribution, and v controls the skewness. 
Figure 1 shows curves that describe the behavior of the gamma density for different values of v. 

0.0      0.2      0.4       0.6      0.8       1.0       1.2       1.4       1.6       1.8       2.0 

POWER LEVEL, r , 

Fig. 1 — Power level probability density function 

With the choice of the gamma pdf for the variation of the power level from one observation to 
the next, the univariate amplitude pdf is given by the K-distribution 

2v_ 

gi\x\) = -^ 
r{v) 

iV? 
v-l 

K v-l 
1    I./27 
1^ IV — 

V 
(5) 
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The multivariate complex pdf of the clutter process is obtained by solving the integral in Eq. (2) [19]. 
This is given by 

V 

fix) = 
V 

r(j')(27rr I AI 

V—^'A-';c 
K.. V—^'A-' (6) 

where Ky() is a modified Bessel function of the second kind of order v. Figure 2 shows curves that 
describe the univariate amplitude pdf. The covariance matrix of the complex pdf is easily shown to 
be equal to rjA. 

1.2 1.6 2.0        2.4        2.8        3.2 3.6        4.0 

Fig. 2 — K-amplitude probability density function 

NEYMAN-PEARSON TEST 

The radar detection problem is defined as a problem in binary hypothesis testing [20], and the 
optimum detection procedure is given by the well-known Neyman-Pearson test. The problem is for- 
mulated as follows: 

Select a complex vector sample y from one of two possible sta- 
tistical populations 

HQ:   y = n 

Hi',    y = n + s f 
where n is a complex vector of length m of noise samples and s is a 
complex vector of length m of signal samples that is independent of 
n. The desired test must decide in an optimal manner if the observed 
sample y was caused by noise alone or by signal plus noise. A choice 
in favor of H^ is said to be a detection (either true or false). 
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The Neyman-Pearson test is optimal in the sense that for a fixed probability of false alarm, it 
maximizes the probability of detection.  The test is given in the form of a likelihood ratio, 

f(y\Hi)  > 

f(y\Ho)  < 
T, (7) 

where f(y \ HQ) represents the pdf of y, given hypothesis HQ, and /(y | H^) represents the pdf of y, 
given hypothesis H^.   For the specific problem studied here, the likelihood ratio is given by 

\.     — 
V— (y - s)'A V - s) 

p ~ m 

^NP ' 

Vf 5^A-V 

K,. ^ — (Sr^^yA-'(y - s) 
V 

if 
"■v—m yl^y'K-' 

(8) 

Here the signal may be written as 

s = ae^^'s , m 
where a is the signal amplitude, <^^ is the initial signal phase, and f is a complex steering vector that 
represents the pulse to pulse phase shift of the signal caused by the Doppler shift. This steering vec- 
tor is assumed to be known; in practice, a bank of filters is built to determine the Doppler shift of the 
target. However, the signal amplitude and initial phase are are assumed to be unknown. As a result, 
the likelihood ratio as given above is not suitable as a detpction procedure.   The given test must be 

(1) accompanied by an estimator of the unknown quantities, 

(2) approximated to remove the dependency on the unknowns, or 

(3) averaged over an assumed statistical distribution of the unknown quantity. 

In this problem, step (3) is mathematically intractable, and a combination of steps (1) and (2) is used. 

ESTIMATION OF UNKNOWN SIGNAL AMPLITUDE 

The estimate of the unknown signal amplimde is based on the maximum likelihood (ML) estima- 
tor of the signal amplitude under the assumption that the signal phase is known. This ML estimate is 
discussed in Appendix A.   The estimate is given by 

a 
\s'A-^y 
s'A -1, (10) 

Figure 3 is a histogram of the typical accuracy of this estimate against simulated data. Note that the 
estimate is essentially an implementation of the matched filter. It is of interest to examine the 
behavior of this estimate under the hypothesis of noise only. Appendix B shows that the probability 
of the estimate being greater than or equal to a given value (provided that the hypothesis of noise 
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Fig. 3 — Amplitude estimates; v = 1, TJ = 1, p = 0.98, two pulses 

1 
alone is true) may be solved for in closed form.   As a result, we may establish a threshold, say T^, 
such that the probability of the amplitude estimate is greater than or equal to this threshold when the 
hypothesis of noise alone is true and is equal to a desired probability of false alarm.   If the amplitude 
estimate exceeds this threshold, we can declare a detection without further processing. 

APPROXIMATION OF NEYMAN-PEARSON TEST TO REMOVE DEPENDENCY 
ON THE SIGNAL PHASE 1 

To remove the dependency of the likelihood ratio on the initial signal phase, the quadratic form 

is replaced by 

\y'^'^y + s'K'^s - la \s'A.~^y 

If the quadratic form given above is expanded, the crux of this approximation is seen to be the 
approximation of ReCj'A"'}') by | j'A"V I • This is the implementation of the matched filter when 
the signal phase is uniformly distributed. 

EVALUATION OF DETECTION PERFORMANCE 

At this point, the detection procedure may be evaluated. To facilitate the numerical work, the 
log-likelihood ratio is evaluated in each case. The log-likelihood ratio yields exactly the same detec- 
tion performance as the likelihood ratio. It does however require different detection threshold set- 
tings. Figure 4 is schematic of the detection procedure. As shown, the estimate of the signal ampli- 
tude is first formulated. If this estimate exceeds a threshold, a detection is declared and processing 
stops. If the estimate does not exceed the threshold, the approximate log-likelihood ratio test is for- 
mulated and a detection decision based on it is made. 
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a)      y 

b)       y 

*-  DECLARE TARGET 

X^>T)^^^    >   DECLARE TARGET 

DECLARE NO TARGET 

I§'A-I§ 

K = In 
y- y'A- ^ 

|§'A- 

i'A- 1§ J 

^ 

^ 

V  —  V^ 

r                            -^ I* - m 

[Vf y'A- y 

\- 
li'A- 
i*A- 1§ j J 

V^y'A- ~y 

Fig. 4 — Detection procedure for approximate detector 

For the examples evaluated, Pf^ = ^^ ^, fn =   two pulses, p (the correlation between the two 
pulses)   = 0.98, 7j = 1, i- = 0.1, 1, 5, and the steering vector is given as 

s' (l+yO      O+jl), 

which represents a 90° phase rotation between pulses.   Finally, the signal-to-clutter ratio is computed 
as 

^ ^2, s/c = a. I2r\ 

As stated above, the threshold at the output of the amplitude estimator may be obtained in closed 
form (Appendix B). Figure 5 shows curves describing this result for the three examples computed 
here. 

A closed-form evaluation of the detection threshold at the output of the log-likelihood ratio test 
did not prove possible, but the thresholds were determined by using importance-sampling techniques 
[21,22]. Figure 6 shows curves describing these results for the three examples computed. To ensure 
that the probability of false alarm (P^^) at the output of the approximate detector is essentially equal 
to the desired value (10~^), the thresholds were chosen so that the Pj^ caused by the amplitude esti- 
mation procedure alone and the Pf^ caused by the evaluation of the log-likelihood function alone were 
each equal to 0.5 x  10    .   This setting ensures the Pf^ at the output of the approximate detector is 
< 10~'.   Table 1 shows the actual threshold settings used to compute the various curves. 
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2 3 4 
THRESHOLD 

Fig. 5 — Threshold settings for T^ 
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10 15 20 

THRESHOLD 

25 30 

Fig. 6 — Detection thresholds at output of approximate 
log-likelihood ratio test 
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Table 1 — Threshold Settings Used to Calculate Various Curves 

Approximate Test, Xo 

V To. T 
0.1 4.5 21.0 
1 1.85 19.8 
5 1.16 18.1 

Gaussian Matched 
Filter, \„f 

V T 
0.1 217 
1 89.4 
5 57.1 

Optimum Neyman-Pearson Test, X^yp 

s/c T 
6.53 12.9 
4.95 12.5 
0.51 12.0 

V = 0.1 

s/c T 
2.10 12.5 
0.51 14.0 

-0.73 14.1 
-2.18 14.1 
-3.01 14.0 

s/c T 
-9.03 9.1 
-4.95 13.5 
-3.01 13.8 
-1.42 12.3 

V = 5 

V = 1 

To evaluate the detection performance, the Monte Carlo technique was used.   The data were 
generated as follows: , \ 

(1) a random number was generated from the distribution describing the power level variation: 

(2) a pair of complex Gaussian samples with the desired correlation and the power level from 
step (1) was generated: 

(3) a signal of a given amplitude, with random initial phase and the desired phase rotation 
from pulse to pulse was added to the clutter data; for clutter only, the amplitude was set to 
0. 

This sequence results in two observations and thus one detection decision. Figures 7 through 9 show 
performance curves based on 1000 repetitions. The performance curves of the optimum Neyman- 
Pearson test and the performance curves of the matched filter are also shown. The performance 
curves for the optimum test assume that the signal amplitude and the initial phase are known. The 
Monte Carlo technique was used to compute the performance of the test at several points; the other 
values of the curves were interpolated based on these points. As shown in Fig. 9, the performance of 
the optimum test for low values of signal-to-clutter ratio was extrapolated. This extrapolation was 
necessary since the setting of the detection thresholds in this regime proved to be prohibitively 
difficult. As a result, this particular curve is not intended to be an exact evaluation of the test's per- 
formance but only a heuristic indication of this performance.    The performance curves for the 

10 
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Fig. 7 — Detection performance, v = 5 
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Fig. 8 — Detection performance, y = 1 
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matched-filter case were also obtained by Monte Carlo simulation.   However, the detection thresholds 
for this case were obtained in closed form, as indicated in Appendix B. 

The curves indicate that the optimum test can detect small signals in spiky clutter (the clutter is 
said to get spikier as j' — 0) much better than the matched filter can, although the performances 
approach each other as the signal strength increases. The approximate test yields performance that 
lies between these two cases. Also, performance of the approximate test and of the matched filter are 
seen to approach each other as j' ^ oo. This occurs because the K distribution approaches the Ray- 
leigh as j' — oo. 

SUMMARY 

A procedure for modeling a complex non-Gaussian clutter process as a nonhomogeneous com- 
plex Gaussian process is described. The multivariate pdf associated with this clutter process is con- 
structed so that it has a desired marginal amplitude pdf and a desired covariance matrix. The general 
procedure requires the solution of an integral equation. For this study, the K distribution is used for 
a marginal amplitude pdf, because this pdf matches sea clutter statistics and the solution to the 
integral equation for this problem is known. 

An approximation to the optimum Neyman-Pearson test is implemented and evaluated. This 
approximation is independent of the signal amplitude and initial phase. The resulting detection per- 
formance of this approximate test is less than that of the optimal test but is better than the perfor- 
mance of the matched filter when applied against the same clutter data. 

Because of the arbitrariness of constructing multivariate pdf s from limited knowledge of the 
statistics of the clutter process, the performance of the detector cannot be truly evaluated until it is 
driven by actual clutter data. However, since the clutter modeling was based on a physical model of 
the scattering of electromagnetic waves from the surface of the sea, this detector is expected to 
perform well against sea clutter data. 
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Appendix A 

AMPLITUDE ESTIMATION 

Under the signal hypothesis, the pdf of the observed vector y may be written as 

f(y) 
1 

exp 

(lirr I A I   -"o 

1 (y - s)'A-^(y - s) 
2 T 

where 

f(T)dT, 

s = ae^^s . 

(Al) 

The maximum-likelihood estimate of the signal strength a occurs at = 0.   Assuming that 
da 

the partial differentiation may be taken inside the integral, we have 

df(y) L 
doc (lir)'" IAI   -"o     T™     da 

oc 

lo 
fir)    d exp 

1 (y - s)'A-^(y - s) 
2 f 

dT (A2) 

Expanding the quadratic form and performing the derivative shows that the above expression equals 0 
for arbitrary / (T) if 

Solving this equation yields 

for the estimate of a. 

Reis'A-'^y) - as'A'^s = 0. 

a = Re(5A"'j)/5A"*^, 

(A3) 

(A4) 

Implementation of this estimator, however, requires knowledge of the signal initial phase.   To 
account for our lack of knowledge, we implement 

a =  \s A  ^y\ Is A    s . (A5) 
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Appendix B 

THRESHOLD SETTING FOR THE MATCHED FILTER 

In this report, the form of the matched filter considered is 

\n{ =  \s A  ^y\/a , (Bl) 

where 

a = 1 for the detection curves 

a = s A  ^s   for the setting of T^. 

Conditioned on the value of T and under the noise hypothesis, the pdf of X^f is easily shown to be 

X„,f I        ^mf    I 
/(Vf) = ^ exp i -^^ 

where 

(B2) 

/3 
s A   s 

Still conditioned on the value of 7, we have for the probability of a false alarm 

r 72 ] 
Pfa/T = exp 

2/3T 
(B3) 

The unconditional probability of a false alarm is then 

Pfa   = L   exp 
2/3T 

lfiT)dT 

V 

r( V)       -"O 

nv) 

exp ^ - - V 
— 7  —   - 

j2 

2^7 

V 

K. ^ 
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K. J. SANGSTON 

The thresholds T^ were set by letting j8 = 1/s A  ^s (i.e., a = f A  ^s), and the thresholds at 
the output of the matched filter detector were set by letting |3 = s ST^s (i.e., a = 1).  These results 
were checked and verified by Monte Carlo simulation. 
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